New Energy Economy:An Exercise in Magical Thinking Part 9 Digitalization Won’t Uberize the Energy Sector.


Continuing the serialization of Mark Mills’ report New Energy Economy: An Exercise in Magical Thinking.  This part is Digitalization Won’t Uberize the Energy Sector.

=================================================

Digitalization Won’t Uberize the Energy Sector     

Digital tools are already improving and can further improve all manner of efficiencies across entire swaths of the economy, and it is reasonable to expect that software will yet bring significant improvements in both the underlying efficiency of wind/solar/battery machines and in the efficiency of how such machines are integrated into infrastructures. Silicon logic has improved, for example, the control and thus the fuel efficiency of combustion engines, and it is doing the same for wind turbines. Similarly, software epitomized by Uber has shown that optimizing the efficiency of using expensive transportation assets lowers costs. Uberizing all manner of capital assets is inevitable. Uberizing the electric grid without hydrocarbons is another matter entirely.

The peak demand problem that software can’t fix

In the energy world, one of the most vexing problems is in optimally matching electricity supply and demand (Figure 6). Here the data show that society and the electricity-consuming services that people like are generating a growing gap between peaks and valleys of demand. The net effect for a hydrocarbon-free grid will be to increase the need for batteries to meet those peaks.

 

All this has relevance for encouraging EVs. In terms of managing the inconvenient cyclical nature of demand, shifting transportation fuel use from oil to the grid will make peak management far more challenging. People tend to refuel when it’s convenient; that’s easy to accommodate with oil, given the ease of storage. EV refueling will exacerbate the already-episodic nature of grid demand.

To ameliorate this problem, one proposal is to encourage or even require off-peak EV fueling.85 The jury is out on just how popular that will be or whether it will even be tolerated.

 

Although kilowatt-hours and cars—key targets in the new energy economy prescriptions—constitute only 60% of the energy economy, global demand for both is centuries away from saturation. Green enthusiasts make extravagant claims about the effect of Uber-like options and self-driving cars. However, the data show that the economic efficiencies from Uberizing have so far increased the use of cars and peak urban congestion.86 Similarly, many analysts now see autonomous vehicles amplifying, not dampening, that effect.87

That’s because people, and thus markets, are focused on economic efficiency and not on energy efficiency. The former can be associated with reducing energy use; but it is also, and more often, associated with increased energy demand. Cars use more energy per mile than a horse, but the former offers enormous gains in economic efficiency. Computers, similarly, use far more energy than pencil-and-paper.

Uberizing improves energy efficiencies but increases demand

Every energy conversion in our universe entails builtin inefficiencies—converting heat to propulsion, carbohydrates to motion, photons to electrons, electrons to data, and so forth. All entail a certain energy cost, or waste, that can be reduced but never eliminated. But, in no small irony, history shows—as economists have often noted—that improvements in efficiency lead to increased, not decreased, energy consumption.

If at the dawn of the modern era, affordable steam engines had remained as inefficient as those first invented, they would never have proliferated, nor would the attendant economic gains and the associated rise in coal demand have happened. We see the same thing with modern combustion engines. Today’s aircraft, for example, are three times as energy-efficient as the first commercial passenger jets in the 1950s.88 That didn’t reduce fuel use but propelled air traffic to soar and, with it, a fourfold rise in jet fuel burned.89

Similarly, it was the astounding gains in computing’s energy efficiency that drove the meteoric rise in data traffic on the Internet—which resulted in far more energy used by computing. Global computing and communications, all told, now consumes the energy equivalent of 3 billion barrels of oil per year, more energy than global aviation.90

 The purpose of improving efficiency in the real world, as opposed to the policy world, is to reduce the cost of enjoying the benefits from an energy-consuming engine or machine. So long as people and businesses want more of the benefits, declining cost leads to increased demand that, on average, outstrips any “savings” from the efficiency gains. Figure 7 shows how this efficiency effect has played out for computing and air travel.91

 

Of course, the growth in demand growth for a specific product or service can subside in a (wealthy) society when limits are hit: the amount of food a person can eat, the miles per day an individual is willing to drive, the number of refrigerators or lightbulbs per household, etc. But a world of 8 billion people is a long way from reaching any such limits.

The macro picture of the relationship between efficiency and world energy demand is clear (Figure 8). Technology has continually improved society’s energy efficiency. But far from ending global energy growth, efficiency has enabled it. The improvements in cost and efficiency brought about through digital technologies will accelerate, not end, that trend.

 

 

 

 

 

=====================================================

The serialization of Mark Mills’ report concludes with the next part titled Energy Revolutions Are Still Beyond the Horizon.

cbdakota

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s